Sequential Circuits

Mechanical and Electrical Engineering Second Grade Level by Wolfgang Neff

Sequential Circuits (1)

- Two representations are frequently used
 - Mealy Machine (dashed arrow allowed)
 - Moore Machine (dashed arrow not allowed)

Sequential Circuits (2)

- Design process
 - Create state diagram
 - Number of states
 - Transitions and conditions
 - Encode states
 - One D flip-flops per bit
 - Design control logic
 - State/transition table
 - Design output logic

Sequential Circuits (3)

• Example I

Assignment

Design a sequential circuit which outputs 1 if an even number of 1 was read.

– State diagram

Sequential Circuits (4)

- Example I (continued)
 - Number of states
 - Even, odd \rightarrow 2 states \rightarrow 1 bit \rightarrow 1 D flip-flop
 - State table (transitions and conditions)

Q	а	Q+
Even (0)	0	Even (0)
Even (0)	1	Odd (1)
Odd (1)	0	Odd (1)
Odd (1)	1	Even (0)

- a Input
- Q Current State
- Q⁺ Next State

Sequential Circuits (5)

- Example I (continued)
 - Encoding of states
 - Even bit count: 0, 2, 4, 6, ...
 - Odd bit count: 1, 3, 5, 7, ...
 - Output logic

State	Encoding
Even	0
Odd	1

Sequential Circuits (6)

- Example I (continued)
 - Control logic

Sequential Circuits (7)

- Example I (finished)
 - The resulting sequential circuit

Sequential Circuits (8)

- Example II
 - Assignment

Find two subsequent 1 in a bit sequence

Pulse Diagram

Sequential Circuits (9)

- Example II (continued)
 - Number of states
 - None, one, two ones \rightarrow 3 states \rightarrow 2 bits
 - State diagram

Sequential Circuits (10)

- Example II (continued)
 - Control logic

Q ₁	Q ₀	а	Q ₁ ⁺	Q ₀ ⁺	State	Encoding		
0	0	0	0	0	None	$0 \rightarrow 0 0$		
0	0	1	0	1	One	$1 \rightarrow 0 1$		
0	1	0	0	0	Two	$2 \rightarrow 10$		
0	1	1	1	0				
1	0	0	0	0	$Q_0^+ = a \wedge \neg Q_0 \wedge \neg Q_1$			
1	0	1	1	0	$Q_1^+ = (a$	$(A \wedge Q_1) \vee (a \wedge Q_1)$	$\wedge Q_0$	
1	1	0	Х	Х				
1	1	1	Х	Х				

Sequential Circuits (11)

- Example II (finished)
 - Output logic

