Design of Combinatorial Circuits I

Please do the following exercises individually.

Chip Production

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	$\mathbf{y}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$y(a, b, c, d)=(\neg a \wedge b \wedge \neg c \wedge \neg d) \vee(\neg a \wedge b \wedge \neg c \wedge d) \vee$
$(\neg a \wedge b \wedge c \wedge \neg d) \vee(\neg a \wedge b \wedge c \wedge d) \vee(a \wedge b \wedge \neg c \wedge \neg d) \vee$ $(a \wedge b \wedge \neg c \wedge d) \vee(a \wedge b \wedge c \wedge \neg d) \vee(a \wedge b \wedge c \wedge d)$

A XOR Gate with three Input Lines

\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{a} \oplus \mathbf{b} \oplus \mathbf{c}$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
& y(a, b, c)=(\neg a \wedge \neg b \wedge c) \vee(\neg a \wedge b \wedge \neg c) \vee(a \wedge \neg b \wedge \neg c) \\
& \vee(a \wedge b \wedge c)
\end{aligned}
$$

Design of Combinatorial Circuits II

Please do the following exercises individually.

Demultiplexer

A demultiplexer is the counterpart of a multiplexer. Look at Wikipedia ${ }^{1}$ to see the interplay of a multiplexer and a demultiplexer. Please design a two bit two way demultiplexer. Look at the following graphical symbol and formal description for details.

Formal description

$$
D X:\{0,1\}^{3} \mapsto\{0,1\}^{4}
$$

$$
\left(s, a_{1}, a_{0}\right) \rightarrow\left(x_{1}, x_{0}, y_{1}, y_{0}\right):=\left\{\begin{array}{l}
\left(0,0, a_{1}, a_{0}\right) \text { if } s=0 \\
\left(a_{1}, a_{0}, 0,0\right) \text { if } s=1
\end{array}\right.
$$

\mathbf{s}	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{0}}$	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{0}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{0}}$
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	1	0	0	0
1	1	1	1	1	0	0

$$
\begin{aligned}
& x_{1}\left(s, a_{1}, a_{0}\right)=\left(s \wedge a_{1} \wedge \neg a_{0}\right) \vee\left(s \wedge a_{1} \wedge a_{0}\right) \\
& x_{0}\left(s, a_{1}, a_{0}\right)=\left(s \wedge \neg a_{1} \wedge a_{0}\right) \vee\left(s \wedge a_{1} \wedge a_{0}\right) \\
& y_{1}\left(s, a_{1}, a_{0}\right)=\left(\neg s \wedge a_{1} \wedge \neg a_{0}\right) \vee\left(\neg s \wedge a_{1} \wedge a_{0}\right) \\
& y_{0}\left(s, a_{1}, a_{0}\right)=\left(\neg s \wedge \neg a_{1} \wedge a_{0}\right) \vee\left(\neg s \wedge a_{1} \wedge a_{0}\right) \\
& x_{1}\left(s, a_{1}, a_{0}\right)=s \wedge a_{1} \\
& x_{0}\left(s, a_{1}, a_{0}\right)=s \wedge a_{0} \\
& y_{1}\left(s, a_{1}, a_{0}\right)=\neg s \wedge a_{1} \\
& y_{0}\left(s, a_{1}, a_{0}\right)=\neg s \wedge a_{0}
\end{aligned}
$$

[^0]
Design of Combinatorial Circuits III

Please do the following exercises individually.

Coder

A coder tells you which line is active. An interrupt controller may use a coder. If interrupt line three is active it requests the controller to execute interrupt no 3. Please design a four bit coder. Look at the following graphical symbol and formal description for details.

Formal description

$C D:\{0,1\}^{4} \mapsto\{0,1\}^{2}$

$$
\left(a_{3}, a_{2}, a_{1}, a_{0}\right) \rightarrow\left\{\begin{array}{c}
i \text { if only one } a_{i}=1 \\
\text { undefinded otherwise }
\end{array}\right.
$$

Please remember that undefined values are don't-care terms which may help to find a better optimization.

$\mathbf{a}_{\mathbf{3}}$	$\mathbf{a}_{\mathbf{2}}$	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{0}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{0}}$
0	0	0	0	X	X
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	X	X
0	1	0	0	1	0
0	1	0	1	X	X
0	1	1	0	X	X
0	1	1	1	X	X
1	0	0	0	1	1
1	0	0	1	X	X
1	0	1	0	X	X
1	0	1	1	X	X
1	1	0	0	X	X
1	1	0	1	X	X
1	1	1	0	X	X
1	1	1	1	X	X

$y_{1}\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=\left(\neg a_{3} \Lambda a_{2} \Lambda \neg a_{1} \Lambda \neg a_{0}\right) \vee\left(a_{3} \Lambda \neg a_{2} \Lambda \neg a_{1} \Lambda \neg a_{0}\right)$ $y_{0}\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=\left(\neg a_{3} \wedge \neg a_{2} \wedge a_{1} \wedge \neg a_{0}\right) \vee\left(a_{3} \wedge \neg a_{2} \wedge \neg a_{1} \wedge \neg a_{0}\right)$

			a_{3}		
	X	1	X	1	
a_{0}		X	X	X	
	X	X	X	X	a_{2}
		X	X	X	
	$y_{0}\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=a_{3} V a_{1}$				

[^0]: ${ }^{1}$ http://en.wikipedia.org/wiki/Demultiplexer\#Cost_savings

