Combinatorial Circuits

Mechanical and Electrical Engineering Second Grade Level by Wolfgang Neff

Combinatorial Circuits (1)

- Design of Combinatorial Circuits
 - Problem: Please add two bits
 - Hints
 - If you add two numbers a carry can occur
 - You need not only determine the result but also the carry
 - On the other hand there can already be a carry when you add two numbers
 - You have to handle this carry, too
 - This type of circuit is called full adder
 - Mathematical description of a full adder
 - $\{0,1\} \times \{0,1\} \times \{0,1\} \mapsto \{0,1\} \times \{0,1\}$ (a,b,c_i) \rightarrow (c_o,r)

c_i: carry in; c_o: carry out; r: LSB of a+b (left most bit)

Or for short:

 $\{0,1\}^3 \mapsto \{0,1\}^2$

Combinatorial Circuits (2)

- Design of Combinatorial Circuits (continued)
 - Example of a Binary Addition

Bit position	3	2	1	0
1st Number (7)	0	1	1	1
2nd Number (5)	0	1	0	1
Carry	1	1	1	0
Result (12)	1	1	0	0

Combinatorial Circuits (3)

- Design of Combinatorial Circuits (continued)
 - Truth table of a one bit full adder

а	b	C _i	Co	У
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Combinatorial Circuits (4)

- Design of Combinatorial Circuits (continued)
 - Switching function y(a,b,c_i)

Combinatorial Circuits (5)

• Design of Combinatorial Circuits (continued)

- Switching function $c_o(a,b,c_i)$

Combinatorial Circuits (6)

- Design of Combinatorial Circuits (continued)
 - Both functions integrated in a circuit

Combinatorial Circuits (7)

- Design of Combinatorial Circuits (continued)
 - Four-bit Full Adder
 - Cascade of four one-bit full adders

Combinatorial Circuits (8)

Design of Combinatorial Circuits (finished)

Integrated four bit half adder

