Kinds of Circuits

Networks and Embedded Software

First Grade Level
by Wolfgang Neff

Combinational Circuits

- Output depends on current input, only
- Output is a function of input
- Time is of no importance
- System does not remember

Sequential Circuits (1)

- Output depends on previous inputs
- Output is a function of input and time
- History is relevant

Sequential Circuits (2)

- Output depends on previous inputs (continued)
- A memory is required

Sequential Circuits (3)

- How to handle history
- Time gets discretized
- Time becomes a sequence

Sequential Circuits (4)

- Time is provided by a clock
- Input becomes a sequence of data
- Function can use older data

Smoothing e. g.:
$y_{i}=\frac{1}{2}\left(x_{i}+x_{i-1}\right)$

Sequential Circuits (5)

- Taking processing time into account
- Input and output are separated
- Circuit reads input on rising edge
- Circuit writes output on falling edge

Sequential Circuits (6)

- Sequential circuits often just store states
- States are handled by state machines (FSM)
- They are represented by state diagrams
- They have
- States
- Transitions
- Conditions

Sequential Circuits (7)

- States are stored by D flip-flops

\mathbf{D}	Q^{+}
0	0
1	1

- 1D: Synchronous data line controlled by clock 1
- C1: First clock signal of the circuit
$-R$: Asynchronous reset line
$-Q$: Stored state

