Series Resistors

Applied Mechatronics

First Grade Level

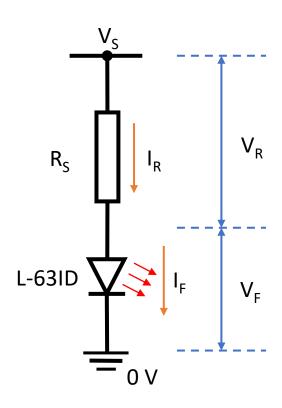
Wolfgang Neff

Series Resistors (1)

- Current Limiting Resistors
 - Devices can break if current is too high
 - Series resistors limit the current
 - They protect the device from damage
- Example LED
 - Supply voltage V_S = 5 V
 - From datasheet for LED L-63ID
 - Typical forward voltage V_F = 1.9 V
 - Typical forward current I_F = 10 mA
 - Maximum forward current I_F = 30 mA

Series Resistors (2)

- Derivation of the formula of the Series Resistor
 - Given values


- Required values
 - R_S
- Relations

•
$$I_R = I_F$$

•
$$V_S = V_R + V_F$$

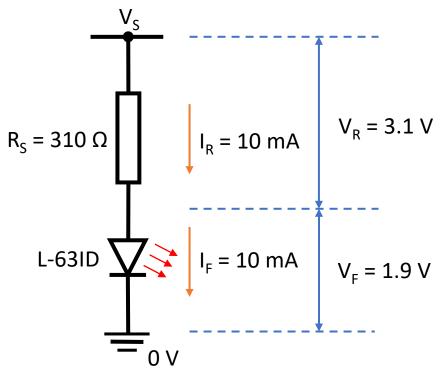
•
$$R_S = V_R/I_R$$

- Formula
 - $R_S = \frac{V_S V_F}{I_F}$

Series Resistors (3)

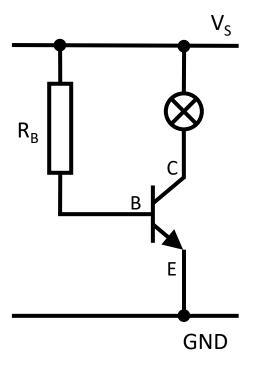
- Calculation of the Series Resistor
 - Given values

•
$$V_s = 5 V$$


- $V_F = 1.9 V$
- I_F = 10 mA
- Solution

•
$$R_S = \frac{V_S - V_F}{I_F}$$

•
$$R_S = \frac{5 V - 1.9 V}{10 mA} = \frac{3.1 V}{0.01 A}$$


•
$$R_S = 310 \Omega \rightarrow 330 \Omega$$

E12 Series of Resistors

Series Resistors (4)

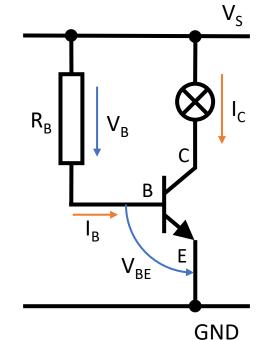
- Example Base Resistor
 - Supply voltage V_S = 5 V
 - Load current $I_1 = 350 \text{ mA}$
 - From datasheet for BC377-40
 - DC Current Gain h_{FF} = 250
 - Saturation Voltage V_{BE} = 0.7 V

Series Resistors (5)

Derivation of the formula of the Series Resistor

Given values

- Required values
 - I_B , R_B
- Relations


•
$$I_c = h_{FE} \cdot I_B$$

•
$$V_S = V_B + V_{BF}$$

•
$$R_B = V_B/I_B$$

Formula

•
$$R_B = \frac{V_S - V_{BE}}{I_C/h_{FE}} = h_{FE} \cdot \frac{V_S - V_{BE}}{I_C} = \frac{V_S - V_{BE}}{I_B}$$

I_C: Collector Current = Load Current

I_R: Base Current

R_R: Base Resistor

V_R: Base Resistor Voltage

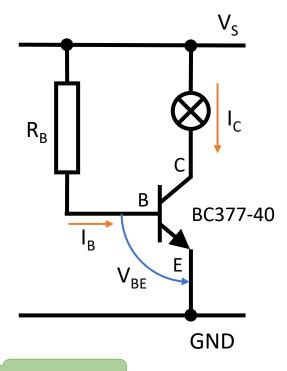
Series Resistors (6)

Calculation of the Series Resistor

Given values

•
$$V_s = 5 V$$

•
$$I_C = 350 \text{ mA}$$


•
$$h_{FE} = 250$$

•
$$V_{BF} = 0.7 \text{ V}$$

Solution

•
$$I_B = \frac{I_C}{h_{FE}} = 1.4 \ mA$$

•
$$R_B = \frac{V_S - V_{BE}}{I_B}$$

= 3071 $\Omega \rightarrow 2.7 \ k\Omega$

E12 Series