Kirchhoff's Circuit Laws

Applied Mechatronics

First Grade Level

Wolfgang Neff

Kirchhoff's Circuit Laws (1)

- Complex Circuits
 - Are completely described by current and voltage
 - The junctions tell us something about current
 - The loops tell us something about voltage

Kirchhoff's Circuit Laws (2)

- Calculation of Unknown Circuit Quantities
 - 1. Make a list of all known values
 - 2. Mark all currents and voltages including arrows
 - 3. Write down the equations for all junctions and loops
 - 4. Set up the equations for all resistors
 - 5. Set up the linear system of equations and solve it

Kirchhoff's Circuit Laws (3)

- Example
 - Make a list of all known values
 - Mark all currents and voltages including arrows

Kirchhoff's Circuit Laws (4)

- Example (continued)
 - Write down the equations for all junctions and loops

Meshes:

• $V_1 - V = 0$

•
$$V_1 + V_2 - V = 0$$

• $V_2 + V_3 - V_1 = 0$

Junctions:

- $|-|_1 |_2 = 0$
- $I_1 + I_3 I = 0$

Kirchhoff's Circuit Laws (5)

- Example (continued)
 - Set up the equations for all resistors

Resistors:

•
$$V_1 = R_1 \cdot I_1$$

•
$$V_2 = R_2 \cdot I_2$$

•
$$V_3 = R_3 \cdot I_3$$

Kirchhoff's Circuit Laws (6)

- Example (continued)
 - Set up the linear system of equations

Known Values:

- V = 5 V
- $R_1 = 200 \Omega$
- $R_3 = 50 \Omega$

Meshes: System of Equations • $V_1 - V = 0$ \rightarrow $V_1 = 5$ • $V_1 + V_2 - V = 0 \rightarrow V_1 + V_2 = 5$ • $V_2 + V_2 - V_1 = 0 \rightarrow -V_1 + V_2 + V_3 = 0$ Junctions: • $I - I_1 - I_2 = 0 \rightarrow J - J_1 - J_2 = 0$ • $R_2 = 100 \Omega$ • $I_1 + I_3 - I = 0$ \rightarrow $J_1 + J_3 - J = 0$ **Resistors:** • $V_1 = R_1 \cdot I_1 \rightarrow V_1 - 200 J_1 = 0$ • $V_2 = R_2 \cdot I_2 \rightarrow V_2 - 100 J_2 = 0$ • $V_3 = R_3 \cdot I_3 \rightarrow V_3 - 50 J_3 = 0$

Kirchhoff's Circuit Laws (7)

- Example (continued)
 - Provide the equations to a linear solver

Your system	
V2 + V3 = 5	
V2 + V3 - V1 = 0	
J - J1 - J2 = 0 11 + 13 - 1 = 0	
V1 - 200*J1 = 0	
V2 - 100*J2 = 0	
$V_{3} = 50 \times 13 = 0$	

Source: https://wims.univ-cotedazur.fr/wims/wims.cgi?module=tool/linear/linsolver.en

Kirchhoff's Circuit Laws (8)

- Example (continued)
 - Solve the linear system of equations

Linear solver

You have entered the system Source: https://wims.univ-cotedazur.fr/wims/wims.cgi?module=tool/linear/linsolver.en

This system has a unique solution, which is: j = 7/120, j1 = 1/40, j2 = 1/30, j3 = 1/30, v1 = 5, v2 = 10/3, v3 = 5/3

Kirchhoff's Circuit Laws (9)

- Example (finished)
 - V = 5 V
 - V₁ = 5 V
 - V₂ = 3.33 V
 - V₃ = 1.67 V
 - I = 58.33 mA
 - I₁ = 25 mA
 - I₂ = 33.33 mA

All currents and voltages are determined