Diodes

Networks and Embedded Software First Grade Level by Wolfgang Neff

Diodes (1)

- P-n junctions are diodes
 - Flow Control Valve
 - One-Way Road
 - Forward
 - P-type: +, n-type: -
 - Current flows
 - Reverse
 - P-type: -, n-type: +
 - Current gets blocked

Diodes (2)

- Example: 1N4148
 - Maximum forward current
 - I_F = 300 mA
 - Maximum reverse voltage
 - V_R = 100 V
 - Reverse Leakage
 - $I_R = 0.025 \ \mu A \ (V_R = 20 \ V)$
 - $I_R = 5.0 \ \mu A \ (V_R = 70 \ V)$

Diodes (3)

- Applications
 - Reverse voltage protection
 - Rectifier (e.g. mobile phone charger)

Diodes (4)

- Light-emitting diodes
 - They emit light
 - They have different
 - colors

- They have two leads
 - Long one: anode (+)
 - Short one: cathode (-)

Diodes (5)

- Control of LED
 - They can be switched on or off
 - There are two ways
 - Active high (on = 1)
 - Active low (on = 0)

Diodes (6)

- Example: L-63ID
 - Typical wavelength
 - λ = 627 nm (red)
 - Typical forward voltage
 - V_F = 1.9 V
 - Maximum forward current
 - I_F = 30 mA

Diodes (7)

 Series resistor $V_{s} = 5 V$ $-I_R = I_F$ $-V_R = V_S - V_F$ $V_{R} = 3.1 V$ **Series** $-R = \frac{V_R}{I_R} = \frac{V_S - V_F}{I_F}$ Resistor I_R = 20 mA $\frac{5V - 1.9V}{20 mA} = \frac{3.1V}{0.02A}$ -R =0.02 A LED $V_{F} = 1.9 V$ $-R = 155 \Omega \rightarrow 180 \Omega$ I_F = 20 mA **E12 Series of Resistors** 0 V